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In the variational boundary-element method (VBEM) proposed in [l-3], the problems are posed for 

boundary functionals and generalized Treftz functionals and the solutions are approximated by discrete 

boundary potentials (DBP). In this paper, the VBEM is used to solve some problems of elasticity theory. 

Some problems of the order of the boundary-element (BE) approximations and the structure of the 

matrices of systems of discrete boundary equations (DBE) are considered. The “influence” function is 

constructed using the fundamental sotutions. Error estimates are obtained using the functionals of the dual 

problems. 

1. VBEM ALGORITHMS are considered as they apply to the minimization of boundary functionals 
(BF) of the planar and spatial problems of linear isotropic elasticity theory, assuming that these 
problems satisfy the Korn inequality [4], or that a finite-energy solution exists (for problems in an 
infinite domain [4]). As an example, we consider the second problem of elasticity theory (with given 
stresses on the boundary) in the elastic domain GC E(m), m = 2, 3, with a sufficiently smooth 
boundary S {that satisfies the conditions of the trace theorem). The corresponding variational 
problem involves minimizing the quadratic functional [4] (the mass forces are ignored) 

FG (u) = 2 S w (u)dC - 2 s g(%tds G s - 
on feasible displacement vector functions u(x), xE G, where 2W(u) is the quadratic form of linear 
isotropic elasticity theory and g’“’ (y), y ES is the vector of given stresses along the outer normal v. 
We know [4] that the solution of the problem of minimizing FG(u) exists apart from an arbitrary 
rigid displacement. 

The variational problem is reduced to the boundary in the following way. Assume that the vector 
u satisfies the equilibrium equation Au(x) = 0, x E G. Then by Betti’s formula (41 we obtain the 
equality 

2 j W (u)dG = f ~~v)(u)~~~ 
G S 

where t(‘) (u) is the vector of the normal surface stresses. Thus, the problem minuFG(u) can be 
replaced by the equivalent problem for the BF 

minFg(u), 
UED 

JI = {u:Au(I) -= ~,~EGI (1.1) 

FS (u) := 1 t(“) (u) u ds- 2 5 g(“)u ds 

S S 
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If min ,EDFs(u) = Fs(uO), then the vector u. satisfies the boundary variational equation 

5 
t(“) (uJ u ds - 

S ! 
g(“h ds = 0, Vu IFZ D (1.2) 

The VBEM algorithm for problem (1.1) essentially reduces to the BE approximation of Eq. (1.2). 

2. The BE approximation of regular variational problems (i.e. variational problems without any 
singularities that affect the approximation: for instance, corner points near which the solution 
increases rapidly, etc.) is conveniently obtained by isoparametric BE approximations [5] (see also 
[l]), in which the approximation nodes are identical for the boundary and the required solution and 
BEM basis functions of the same order are used for approximation. To solve the problems that 
follow, we will use these approximations in the form 

YZ’ (*(1) s j: Y%@,k (fl)* i-l,...,m (2.1) 

II=! 
K 

vn (2.2) 

where y $ are the Cartesian (global) coordinates of the nodes partitioning the boundary S, k is the 
node index of the boundary elements As,, Uil are the nodal values of the components of the 
displacement vector u, & are the BEM basis functions and q is the local coordinate of the BE 
points. 

LetSA= UA.s,,n= 1,. . ., N be the discrete boundary approximating S (or S& = S), and GA the 
domain bounded by Sa, . we assume that the approximation (2.2) satisfies the BE compatibility 
condition, which in our case signifies continuity of the global interpolation function across the 
boundary between the elements and is achieved by equality of the nodal values of the required 
solution at the common nodes of adjacent elements [l]. Then 

N 

!/A = r, Yn h), UN (!/A) = 2 % h) (2.3) 
n=1 n=1 

respectively, are the parametric equation of SA and the continuous function that approximates the 
solution at the points yA E SA with the normal VA. 

In what follows, we will use the standard integral representation [6] of a sufficiently smooth 
function in GA by its boundary values UNC~A), auAnN(y~), YA E SA . This representation, originally 
developed in potential theory [6], has been written for problems of elasticity theory in the form [7] 

aN (x6) -:: - 2 ’ s t’vA)(~v”)ur(Ya)dS(yA)+ 
SA j=l 

u*jt’vA’(uN (I/A)) ds @A), 56 E GA 

SA i-1 

(2.4) 

Here {v’j} is the tensor of fundamental solutions of the equation of elasticity theory (the Somigliana 
tensor). The representation (2.4) has been proved [6, 71 for a piecewise-smooth boundary SA. We 
know that Aa, = 0 for all points XA inside and outside SA. The integral representation (2.4) 

. suggests alternative formulations of BE approximations. if Green’s tensor of the first problem of 

statics (or Green’s tensor of the second problem of statics) is taken as the fundamental solution, 
then the corresponding integral in (2.4) vanishes (such BE approximations are considered in detail 
in [l, 21). 

The representation (2.4) assumes that the approximations (2.2) are sufficiently smooth: for the 
existence of the second integral we should have at least uN E Wz2 (sA) [ W2* (sA) is the Sobolev class 
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of functions that are continuously differentiable at the points Sh, and the approximation (2.1) is also 
assumed to be sufficiently smooth]. In each of the cases described above, the vector functions 
CL&~), XA EGA, VN are admissible functions of the finite-dimensional variational problem 
min&* (aN), CX~E DA approximating problem (1. l), because they satisfy the equilibrium equation 
in GA _ We then apply the Ritz process [‘l], which produces a discrete variational equation 
approximating equation (1.2) : 

(2.5) 

(v, (7) is the outer normal at the points of &,); in (2.5) for a given vector function g(“’ we have used 
a BE approximation of the form (2.2), where g$_ are the nodal values of the components of the 
discrete function g cvn) and integration is over the union of the BEs Uh, , for which k is a common 
node. Equation (2.5) is essentially the Ritz system of DBE (in contracted form) for the nodal values 
U$f, ; successively writing the equations for each node k, we obtain the sums X,, with non-zero 
integral coefficients for the contribution of the BEs for which k is a common node. Thus, the matrix 
of the Ritz system is banded (the bandwidth depends on the order of the BE, see below) and 
symmetric, so that 

(2.6) 

The transition frok(2.5) to the DBE system involves [l, 21 BE approximation of the vector of 
boundary stresses [7] 

t(” (u) =2$,u+3c (vadiv u) +p{vXrot u) 

on the approximations (2.2) of the displacement vector. This BE approximation can be written at 
the points of As, in the form [ 1,2] 

?I& no K 

(2.7) 

where T, is a scalar operator, whose form is established from the componentwise expression for the 
vector t(“)(u): 

(2%) 

where ~$1 (q) is the BE approximation (2.1). Since I& = I/Q(~), the derivatives ~9:~ & in (2.7a) 
are evaluated by the rules of differentiation of a compound function; the direction cosines I$) of 
the normal v, are computed by transforming the differentials of the area (the length) of the BEs dr, 
from the local coordinate system (T$ to the global coordinate system (yn) [5, 81. We define this 
transformation as 

ds(y,)=IJ,Idt~+s, = IJ,Idq=diamAs, S 
Here 11, j is the determinant of the Jacobi matrix [.I~] of the transformation (2.1). By [5, 81, we have 
in general (m = 2,3) 
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Ir,l ={Edf?t}“. l$‘=din)I,I-L 
i=l 

where di, are the minors of the matrix [Jn], which are defined in terms of the derivatives Qyi) , i, 
j = 1, 2, 3. 

Having determined from (2.5) the nodal values CJ$$ , i = 1, . . . , m, we can represent the “Ritz” 
BE approximations of the solution of problem (1.1) and the equivalent (see Sec. 1) boundary-value 
problem with given stresses on S in the form 

N K 

EN = aN @A) = 
w 

~ %k%k (sA)v %A = GA (2.8) 

n=l k=l 

where, by (2.4), the “influence functions” of the kth node of the nth BE are defined as 
superpositions of scalar potentials with density concentrated on the BE (see also [ 1,2]) 

1 
m 

.._ _ 

’ 2 s1 
l, u’%#k 1 1 n Ids,, (‘lb Vn (2.9) 

As, j-1 

For instance, in the St Venant problem of torsion of an isotropic homogeneous rod, which in terms of the 
scalar warping function of the rod cross-section reduces to a variational problem of the form (1.1) on the set of 
harmonic functions, the functions (2.9) are defined as harmonic DBP (of a double or a simple layer); with 
linear BE approximation of the elliptical contour of the rod cross-section, we obtain the analytical expression 

2 2 

ank = .i In]t.,--y.h/. 
ii) Ci) 

Z& -= 
c ZA 1 Ynk = 

;I: 
Ynk 

i=l i-1 

where y$ are the Cartesian coordinates of the partition nodes. The functions (Y,,~ define the level lines of the 
warping of the rod cross-section under torsion and correspond to the classical function that describes the source 
or sink surface [9] (depending on the sign of the nodal values). A linear combination of the products of the 
nodal values, which are obtained by BE approximation of the variational problem (1. l), and of the functions 
a&, k = 1, 2, n = 1, . . , N, produces a semi-analytical (numerical-analytical) solution of the St Venant 
problem [2]. 

For vector problems of elasticity theory, (2.9) is computed using the row vector of the Somigliana 
tensor v’j = (P, v12, v’~). We know that this vector is the solution (for xfy) of the homogeneous 
Lame equation: for the plane problem, the components of the vector are given by [7] 

un “=cn[ c,r,,-‘+(x(*) -y,c’))2r,-J), 

t, 
” 
‘*=(-o(p)---y,,(‘)) (x(2J-y,,(2))r.-3, 

‘2 

(x(l), xf2’ ) =Ga 

(Yn("l y*‘*‘) =sa (2.10) 

rrl z \ r (&J - yf’)2 
i-7 1 5; ( cg -= [16n~(l-~a)]-‘, cl = 3-4~ 

where y$) (q), q EA.~, is the BE approximation (2.1). A simple analysis show that the computation 
of CY_,~ with linear BE approximation (2.1) using (2.10) reduces to taking integrals of the form 

\ q”R-“dq, B = arf A- by + c. q -= 0, 1,2, 
* 

where the coefficients a, b, c depend on the coordinates xk) E GA, y ik E SA . These integrals are 
computed analytically [lo, pp. 67-681 and contain a logarithmic function of the distance r, , as well 
as the power functions r, -P. Thus, the “influence functions” a,& in the BE approximations (2.8) are 
defined VXA E GA. The domain Cd may be unbounded, in which case the simple layer potential 
decreases at infinity as O(r,, -’ ) and the double layer potential decreases as 0 (rnw2). The final 
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formulas for (Y,~ are fairly complicated, because the BE approximation of the vector t(“n)(%@) is 

not simple [see (2.7), (2.7a)]. 

3. Accuracy estimation of the BE approximations {uN} [see (2.8)] of the solution of the 
finite-dimensional variational problem minFsA(uN), USE Da reduces to estimating the error of the 
BE approximations uN(yh) at the points yaESa, because at the points x&E GA the feasible 
functions of the problem exactly satisfy the differential equation of the boundary-value problem. 
These estimates can be obtained using the a posteriori error estimates of the approximate solutions 
of the dual variational problems for the BF of linear elasticity theory [ll], which, as it applies to BE 
approximation estimates, take the form 

IhA- UN b/,, SA < c+A hv), C+> 0 (34 

11 t'vA'(U,A) -t(VA)(UN) II--‘/r. sA < CA (UN), c._ $ 0 

A (ulli) -= {c;\” (Fs, - @sA]}% CA > 0 

(here the constants c+ , c_ are independent of N). In (3.11, nOA is the boundary value of the solution 
u0 of the problem (1.1) at the points YA E Sa, * Fs,, Qs, are the BFs of the dual problems [ 111, which 

are computed, respectively, on the BE approximations UN, t@“)(uN) [see (2.3) and (2.7)]; the 
constant CA can be determined from the estimate [ll] 

2 
s 

W(u)dGa > CAIJUII:,CA~ VUEW~'(GA) 

GA 

The ei’*(Sh) norms used in (3.1) are well-defined because by construction [see (2.3)] 
uNE W,‘(S,). Note that in a numerical experiment (see the problems below) it is sufficient to 
establish that as the partition SA into boundary elements is made finer, the difference Fs,- Qs, 
decreases. This can be done [ll] using the equality 

where g (“ij is the BE approximation of the given vector function g(“) [see (2.5)], and the integral on 
the right-hand side is evaluated as 

(3.3) 

[here we use the approximations (2.2) and (2.7)]. Formula (3.3) is essentially the approximation of 
(1.2) at the points of SA . 
lv-, 03 [ll]. 

By virtue of the convergence of BE approximations [3], we have ISA--+0 as 

These a posteriori estimates do not provide any information about the order of the approximation 
error, i.e. about the rate of convergence of the approximations uN-+ ua as IV+ 00 (diam&,-+ 0). 
This information is provided by a priori error estimates. Here we can use the a priori estimates of 
the Bubnov-Galerkin finite-element (FE) approximations [12]. Such estimates have been con- 
structed for approximate solutions of second-order elliptical boundary-value problems. 

Convergence of BE approximations based on the integra1 representation (2.4) has been 
established [3] for the case when SA is a finite union of Lyapunov surfaces, which corresponds to a 
compatible union of the BEs A.s, , as used in the conformal FEM [ 121. For such approximations, the 
construction of an a priori estimate of the “global” FEM (BEM) interpolation reduces to the 
construction of an error estimate of the “local” interpolation on a single finite element [12], using 
the estimate of the approximation error of a sufficiently smooth function by FEM interpolants in 
some norm. Thus, the error of the BE approximations {uN} [see (2.3)] can be estimated using the 
following bound [ 121: 
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where d = diam As,, , r-2 1 is the local order of approximation accuracy, l(-j(l,s, is the norm in the 
Sobolev class of vector functions W,l (S,); the constant c is independent of d. In the L2 (S,) norm, 
the maximum order of interpolation accuracy is higher [12]. 

4. We considered a generalization of the Flamant problem [13] for an elastic half-plane loaded by normal 
pressure along a second-order curve y (‘) = %(JJ(~))~R-~ =S at the points y = Cy(‘), yC2))ES; the pressure 
function was taken [14] in the form of the solution of the problem of a punch with a surface described by the 
curve S penetrating (without friction) into the half-plane. This problem was posed in displacement terms as the 
variational problem (1.1) without mass forces with the supplementary conditions 

P’(u(y))=O, y=[--m, m]\s, T(u(Y))=Ov YEI-=, -1 

where T(U) is the tangential stress vector. For the BE approximation of the problem, we used linear 
approximations of the form (2.1), (2.2) and BE approximations (2.8). The functions (2.9) were computed using 
the sum vnll + v,,l’, Vrz [see (2.10)]. The Ritz system [see (2.5)] is constructed from the DBE, which are formed 
according to the “pattern” Vn = 1, . , N, i, j = 1, 2: 

Here we have implemented the approximation (2.7), using the notation 
7. 

where y$L are the coordinates of the nodes k = 1, 2, and p:L are the nodal values of the given function 
pj”)(y(‘)) (see [Id, p. 6.51). The numerical implementation was considered for the following special case of 
material characteristics: modulus of elasticity E = 105, Poisson’s ratio u = 0.3, Lam6 constants A = 0.5769E, 
p = 0.3846E and radius of curvature of S, R = 1. The coordinates of the nodes partitioning the curve S on one 
side of the axis of symmetry y(*) (for N = 6) and the nodal values of the displacements obtained by solving the 
DBE system (for E = 1) are given below: 

101 x y’n’: 0; 335; 67i; 1005; 1338; 1670; 2OOO 

104 x g!;; : 0; 5.6; 22.5; 59.5; 89.5; 139; 200 

10’ x lJ$ : 0; -45; 116; -179; 253; -320; 763 

100 x’ u$ : - 1453; 6.45; --14.5; 20.5; -24; 26.5; 0 

Analysis of the results leads to the following conclusions. There are no horizontal displacements on the axis 
of symmetry y(*), while the vertical displacements are small. As we move away from the yC2) axis, the 
components lJ’,j decrease and the components U$ conversely increase due to the increase in the shear 
strains. The “deformed” coordinates of the partition nodes are given by yti , = yii + Utk X lo’, i = 1,2. 

A numerical experiment was carried out, evaluating the sum (3.3) for N = 6, 12,24: 86~0.22, 212~0.205, 
& = 0.175. The difference (3.2) thus decreases relatively slowly as the BE partition is refined, because we are 
essentially approximating a piecewise-linear function g (“*) [see (2.5)] by a piecewise-constant function 
t@‘n@@) [see (2.7)]. In the duality algorithm [15], to solve the prototype contact problem based on the 
variational problem (l.l), we have used second-order BE approximations, which produce more-accurate 
approximate stresses. Note also that with first order BE approximations, the KN x KN square matrix of the 
DBE system (KN is the number of nodes in SA) is banded with bandwidth 4; with second-order BE 
approximations, the bandwidth is 6. 

We considered the problem of displacements for the points of a spherical surface with zero boundary 
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conditions for the displacement vector on meridional (or annular) lines and acted upon by a normal surface 
load. Note that these conditions on a set of three-dimensional (or two-dimensional) measure zero lead to 
singularity of the boundary-value problem. Allowance for these conditions in traditional mathematical 

methods of elasticity theory is therefore a fairly complicated problem. The BEM implements these conditions 
by defining the zero values of the components of the displacement vector at the corresponding nodes of the 
discrete surface approximating the given surface. By circular symmetry, we triangulated one eighth of the 
spherical surface with an appropriate node indexing, which subsequently ensured fairly simple construction of 
the matrix of the DBE system with a minimum bandwidth. The isoparametric BE approximation for plane 
triangular BEs A,s, is characterized by the fact [.5,8] that the interpolation functions +k are identical to the local 
coordinates Q, k = 1, 2, 3; thus, the approximations (2.1), (2.2) have the form 

3 3 
vi) 

!/II = x Ii) ,i) 
Ynr ‘Ir, un = c (0 

Unh Qr, i=l,2,3, Vn 

h-=1 h-1 

where y $ are the Cartesian coordinates of the mesh nodes formed by the meridians and the parallels. The 
DBE are formed by a seven-point scheme (by a five-point scheme for bilinear BE approximation); each nodal 
value U$ , i = 1, 2, 3 is multiplied by the sum of the contributions of six BEs; the resulting matrix is 
block-banded with bandwidth 7 and symmetric blocks. Given the symmetrically defined (on meridional lines) 
homogeneous boundary conditions for the displacement vector, the recommendations of [16] enable us to 
preserve the symmetry of the submatrices (blocks). The column vector on the right-hand side of the DBE 

system is constructed using the BE approximation of the y(‘) axis components of the given normal load 

3 

@I) = l(i) 
pi n c 

P w (Y$) qk’ f = I, 2, 3, Vn 
k=l 

where p(““) 0, $ ) are the nodal values of the function p(““) (y”‘). 
To solve the DBE system, we followed the recommendations of [16]. In particular, the inversion procedure 

for symmetrical submatrices enabled us to implement the Gauss elimination method for reducing a square 
matrix consisting of submatrices to an upper triangular block matrix. A numerical experiment was carried out 
evaluating the sum (3.3): for N = 15,30 and 60 we obtained, respectively, Z:N = 0.835; 0.627; 0.353. 

We considered the prototype problem of a normal tearing crack in an elastic unbounded plate loaded at 
infinity by a uniformly distributed stretching loadp. The analytical solution of this problem is known (see, e.g. 
[17]) in the form of the displacement field (u(l), u(*)) and the stress field (u(l), u(*), a(‘*)), whose components are 
defined as functions of polar coordinates (r, 0) (with the origin at the tip of the crack); the solution is exact (for 
small r) in a region ahead of the tip of the crack, which is much smaller than the crack width 21; the stress 
intensity factor [17] is K, = pflsin*B, where B is the angle that the plane of the crack makes with the load 
axis. 

For the variational problem (1.1) (the applicability of this problem was suggested in [18], see R. V. 
Gol’dshtein’s supplement), we represented the plane of the crack in the Cartesian coordinate system (y(i), y(*)), 
y(‘) is the axis in the plane of the crack. We assumed that the crack contour S = S, US_ was traced by circular 
arcs of small curvatures and was the interior boundary of the region of the plate with a singular point at the tip 
of the crack. We considered a linear BE approximation of the form (2.1), (2.2); to approximate the given 
function g(u), the nodal values g$$ , 
o(l), o(2), o(i2) 

I = 1,2 [see (2.5)] were defined in terms of the values of the components 
at these nodes; the increase in the stresses in the neighbourhood of the singular points was 

allowed for by condensation of nodes, and the DBE were written for the nodes k E S+A and k’ E S_A sufficiently 
close to the singular point. We compared the nodal values of the displacement components C/:1, i=l, 2 
obtained from the DBE system with the nodal values of the analytical solution u@); with a quarter of S 
partitioned into N = 6, 12 and 24 boundary elements, the error averaged over the nodal points was E = 19, 16 
and 11%) respectively. 
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The regular perturbation method (the small-parameter method) is developed in order to investigate the 

dynamics of weakly inhomogeneous rods with arbitrary distributed loads and boundary conditions of 

various types leading to self-conjugate boundary-value problems. The approach rests on the introduction of 

a perturbed argument, namely, the Euler variable, and a suitable representation of the eigenfunctions. It 

enables one to carry out uniform constructions of the basis and the eigenvalues, as well as the frequencies 

with any required accuracy in terms of the small parameter using quadratures of known functions. To 

illustrate the effectiveness, an example involving inhomogeneous rods with hinged left-hand ends and free 

right-hand ends and with box-shaped and circular cross-sections whose dimensions depend linearly on the 

coordinate are investigated and computed. 

1. FORMULATION OF THE PROBLEM 

CONTROLLED planar motions of an elastic rod undergoing transverse bending deformations are 

considered. Longitudinal extension will be neglected. It is assumed that the neutral line of the 
unstrained rod is straight and the elastic strains are small, i.e. the motion of the rod can be described 

+Prikl. Mat. Mekh. Vol. 56, No. 3, pp. 452-464, 1992. 


